激光写光电子学进展

高增益、低DMG少模掺铒光纤及其放大性能研究

赵新月,邱强,娄阳,褚应波,李进延*

华中科技大学武汉光电国家研究中心, 湖北 武汉 430074

摘要 空分复用技术是大幅提高单根光纤数据传输容量的重要技术之一。对于长距离模分复用传输系统而言,少模掺 铒光纤放大器是补偿光纤传输损耗必不可少的器件。因此,在少模掺铒光纤支持的所有模式中获得均衡增益至关重要, 高差分模态增益会降低系统的传输性能。本文通过改进的化学气相沉积技术制备了 18 μm/124 μm 少模掺铒光纤,实验 演示了基于该光纤的两模掺铒光纤放大器。当使用 LP_{11b}模式泵浦时,该放大器所支持的 LP₀₁和 LP_{11a}模式可以在 1535~ 1560 nm 波段获得 19.4 dB 以上的增益,差分模态增益最大为 0.66 dB。

关键词 光纤光学;模分复用;少模掺铒光纤;少模掺铒光纤放大器;差分模态增益 中图分类号 O436 **文献标志码** A

DOI: 10.3788/LOP221336

Study on Few-Mode Erbium-Doped Fiber with High Gain, Low DMG and its Amplification Performance

Zhao Xinyue, Qiu Qiang, Lou Yang, Chu Yingbo, Li Jinyan^{*}

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

Abstract Space division multiplexing is one of the main technologies to greatly improve the data transmission capacity of a single optical fiber. Few-mode erbium-doped fiber amplifier is essential to compensate for the transmission loss in long distance mode division multiplexing transmission systems. Therefore, obtaining equalization gain in all modes supported by few-mode erbium-doped fiber is vitally important, and the high differential modal gain will reduce the transmission performance of the system. In this study, 18 μ m/124 μ m few-mode erbium-doped fiber was fabricated by modified chemical vapor deposition technique, and a two-mode erbium-doped fiber amplifier based on the fiber was demonstrated experimentally. The gain is above 19.4 dB for LP₀₁ and LP_{11a} modes and its differential modal gain is lower than 0.66 dB between 1535 nm and 1560 nm when the LP_{11b} mode is pumped.

Key words fiber optics; mode division multiplexing; few-mode erbium-doped fiber; few-mode erbium-doped fiber amplifier; differential modal gain

1引言

随着移动互联、云计算和物联网的发展,人们对互 联网传输容量的需求呈现爆发式增长。然而,现有单 模光纤通信系统的传输容量已经趋近香农极限,因此 迫切需要开发新的信息传输维度,来满足日益增长的 容量需求^[12]。在单模光纤的其他复用维度,如波分复 用(WDM)、时分复用(TDM)、正交频分复用 (OFDM)、码分复用等,已经被充分利用的基础上,空 分复用(SDM)技术在大容量光纤通信系统中得到了 广泛关注并迅速发展^[34]。 空分复用技术^[57]包括芯分复用和模分复用 (MDM)。芯分复用是指利用多芯光纤^[89]的每一个纤芯作为独立的传输通道进行信号的传输。而模分复用 技术^[10]是利用少模光纤传输少量空间模式,将不同信 道的信号加载到每一个模式上,利用模式的正交性,进 行信号的传输。基于少模光纤^[11-16]的空分复用传输系 统可以实现多个信道同时传输,使得传输容量成倍增 长。采用少模光纤作为传输线的空分复用技术要实现 长距离传输,少模掺铒光纤放大器(FM-EDFA)是补 偿少模传输系统传输损耗的关键器件。然而,在光放 大的过程中,每个信号模式光场、泵浦光场,以及铒离

收稿日期: 2022-04-18; 修回日期: 2022-05-10; 录用日期: 2022-05-16; 网络首发日期: 2022-05-26 通信作者: ^{*}ljy@mail.hust.edu.cn

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

研究论文

子分布三者在光纤横截面上的重叠不一致^[17],导致不同的模式在少模光纤中放大所获得增益不相同,高差分模态增益^[18](DMG)会导致传输受限,因此在少模掺 铒光纤放大器中最小化差分模态增益至关重要。

2011年,美国中佛罗里达大学的Bai等^[19]首先提 出通过泵浦模式结构的组合实现信号光模式的增益均 衡,并以两模式光纤为例进行了仿真研究,为适用于模 分复用的FM-EDFA的研究奠定了理论基础。同年, 英国南安普敦大学光学光电子研究中心的 Jung 等^[20] 报道了两信号模式增益均衡的实验,在实验中通过折 射率的改变及泵浦结构的改变实现增益均衡。2012年, 南安普敦大学的 Kang 等^[21]对环形结构折射率光纤的 两模式掺铒光纤放大器进行了研究,并通过铒离子的 调节,实现单模式20dB的增益、模间增益差为2dB的 仿真和实验。同年,美国贝尔实验室的Salsi等^[22]通过 将两段铒离子结构不同的光纤进行熔接的方法实现了 四模式群组的增益放大实验,平均每一模式的增益为 20 dB,最大模间增益差为4 dB,噪声系数约为5 dB, 传输波段为1530~1562 nm。2018年,天津大学 Zhang 等[23]设计并制作了具有折射率沟道的双包层少模掺铒 光纤,通过包层泵浦的方式在C波段实现8个模群的同 时放大,最大信号模式增益为19dB,最大差分模态增益 为3dB。2021年,王文笙等^[24]通过优化泵浦模式组合 及光纤掺杂结构,提高了4模式群组与5模式群组在C 波段的增益性能。2022年,阮江冉等^[25]在包层泵浦 条件下,提出了一种支持4模式组的铒离子分层掺杂 环芯光纤,在全C波段仿真实现了4模式组增益超过 22 dB, DMG小于 0.45 dB, 噪声系数小于 5.3 dB。通 过国内外FM-EDFA 文献调研发现,现有的FM-EDFA 在模式数量和综合性能这两方面难以兼得:若 同时放大的信号模式过多,则FM-EDFA最终在全C 波段的最高增益低于20dB,差分模态增益及噪声性 能较差,且增益光纤多为大芯径、环形掺杂等具有特 殊结构的增益光纤。因此,制备一种能够在保证 DMG低、增益高的情况下支持更多模式的少模掺铒 光纤至关重要。

本文基于改进的化学气相沉积(MCVD)技术,制 备了18 μm/124 μm 少模掺铒光纤,通过实验研究了使 用模式选择光子灯笼(MSPL)来控制模态的支持两种 模式的少模掺铒光纤放大器的性能。在每个信号模式 输入功率为-15 dBm 时,该放大器所支持的 LPo1 和 LP11a模式可以在1535~1560 nm 波段获得19.4 dB 以 上的增益,差分模态增益最大为0.66 dB,实现了模式 间的增益均衡。

2 光纤制备

本文的少模掺铒光纤是基于 MCVD 技术结合溶 液掺杂法制备而成的^[26-27]。光纤通过引入 Al³⁺和 P⁵⁺ 两种共掺离子来提高 Er³⁺的掺杂浓度和调控纤芯折射 率。Al³⁺通过溶液共掺的形式引入,P⁵⁺通过气相"反 向"工艺引入。在MCVD进行预制棒缩棒过程中,温 度高达2000℃,导致反应管内P₂O₅大量挥发,在管壁 沉积大量白色 P₂O₅粉末,这种挥发表现为橙色热致发 光,在光纤预制棒的折射率剖面图上表现为纤芯处形 成一个凹陷^[28-29]。采用 Photon Kinetics 公司的光纤预 制棒分析仪(P104)来表征预制棒的折射率分布,光纤 预制棒的折射率剖面如图1(a)所示。可以看到,数值 孔径(NA)为0.119,预制棒的芯径为2.62 mm。预制 棒的拉丝是在特种光纤拉丝塔中以1980℃高温进行 的,控制拉丝速度将预制棒拉制成包层直径为124 µm, 纤芯直径为18 µm的光纤。少模掺铒光纤的吸收使用 Photon Kinetics 公司的光纤分析系统(PK2500)来表 征,采用"截断法"来测试850~1650 nm 波段的吸收 谱^[30],测试结果如图1(b)所示。可以看出,光纤的吸 收系数在982 nm 波长处为15.57 dB/m,在1535 nm 波 长处为50.34 dB/m。

Fig. 1 Few-mode erbium-doped fiber. (a) Refractive index of fiber preform; (b) absorption coefficient

研究论文

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

3 实 验

为了验证少模掺铒光纤的放大性能,搭建了如 图 2 所示的少模掺铒光纤放大器测试平台。该测试平 台由种子光、可调谐衰减器(VOA)、偏振控制器 (PC)、光学隔离器(ISO)、6模光子灯笼等组成,其中 FM-EDF为18 μm/124 μm掺铒光纤。种子光由31通 道 DWDM光源提供,可调谐衰减器对信号光功率进 行调节,以控制每个信号模式的输入功率。信号端偏 振控制器和泵浦端偏振控制器分别确保转换的信号模 式和泵浦模式的纯度。在信号端偏振控制器和隔离器 之后,基模LP₀₁耦合到6模光子灯笼的一个输入分支 (LP₀₁或LP_{11a}),该分支将信号转换为其支持的模式。 同时,1480 nm 单模激光二极管提供的泵浦光在经过 泵浦端偏振控制器之后注入6模光子灯笼的LP_{11b}模式 分支以泵浦FM-EDFA。信号光与泵浦光在光子灯笼 中耦合,而后输入到少模掺铒光纤中。少模光纤的尾 端熔接FC/APC端口的多模跳线,便于接入光谱仪 (OSA)测量输出功率。使用电荷耦合器(CCD)照相 机采集光斑。

图 2 两模式 EDFA 示意图 Fig. 2 Schematic diagram of the two-mode EDFA

本文选取 C-band 步长为 5 nm 的六个波长 (1535.036 nm、1541.349 nm、1546.119 nm、1550.918 nm、 1555.747 nm、1560.606 nm)作为信号源来评估 FM-EDFA 在不同波长下的差分模态增益。通过实验优 化,得到了FM-EDFA 的信号功率值、泵浦功率值以及 增益光纤长度三者的最佳参数,信号功率和泵浦功率 分别确定为-15 dBm 和 400 mW,少模掺铒光纤的长 度确定为3.7 m。图 3为 LPo1和 LP11a模式在 C-band 的 模态增益,以及差分模态增益。可以看出,在1535~ 1560 nm 波段内,少模掺铒光纤获得了 19.4 dB 以上的 增益,差分模态增益最大为0.66 dB,实现了模式间的 增益均衡。通过 CCD 观测到的 LPo1和 LP11a模式的模 斑如图 4(a)、(b)所示。

图 4 模斑。(a) LP₀₁模式;(b) LP_{11a}模式 Fig. 4 Modal patterns. (a) LP₀₁ mode; (b) LP_{11a} mode

研究论文

4 结 论

本文基于课题组成熟的MCVD工艺结合溶液掺 杂法成功拉制出纤芯直径为18 µm、包层直径为 124 µm、数值孔径为0.119的少模掺铒光纤。光纤在 982 nm的吸收系数为15.57 dB/m,在1535 nm处的吸 收系数为50.34 dB/m。通过实验研究了基于自制少 模掺铒光纤的两模式少模掺铒光纤放大器的性能,当 信号模式输入功率为-15 dBm、泵浦功率为400 mW 时,LP₀₁和LP₁₁₄模式在1535~1560 nm波段获得19.4 dB 以上的增益,差分模态增益最大为0.66 dB,在 1541.119 nm波长处达到最小0.46 dB,实现了模式间 的增益均衡。

参考文献

- Tkach R W. Scaling optical communications for the next decade and beyond[J]. Bell Labs Technical Journal, 2010, 14(4): 3-9.
- [2] Ellis A D, Zhao J, Cotter D. Approaching the non-linear Shannon limit[J]. Journal of Lightwave Technology, 2010, 28(4): 423-433.
- [3] 裴丽,李祉祺,王建帅,等.空分复用光纤放大器增益 均衡技术研究进展[J].光学学报,2021,41(1):0106001.
 Pei L, Li Z Q, Wang J S, et al. Review on gain equalization technology of fiber amplifier using space division multiplexing[J]. Acta Optica Sinica, 2021,41 (1):0106001.
- [4] 余哲,徐祖应,付松年.空分复用传输用掺铒光纤研究 进展[J].邮电设计技术,2018(6):77-82.
 Yu Z, Xu Z Y, Fu S N. Review of erbium-doped fiber for space-division multiplexing transmisison[J]. Designing Techniques of Posts and Telecommunications, 2018(6): 77-82.
- [5] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362.
- [6] Li G F, Bai N, Zhao N B, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487
- [7] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5): 345-348.
- [8] Zhu B, Taunay T F, Yan M F, et al. Seven-core multicore fiber transmissions for passive optical network [J]. Optics Express, 2010, 18(11): 11117-11122.
- [9] Wada M, Sakamoto T, Yamamoto T, et al. Cladding pumped randomly coupled 12-core erbium-doped fiber amplifier with low mode-dependent gain[J]. Journal of Lightwave Technology, 2018, 36(5): 1220-1225.
- [10] Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 1982, 21(11): 1950-1955.
- [11] Ma L, Tsujikawa K, Hanzawa N, et al. Design and fabrication of low loss hole-assisted few-mode fibers with consideration of surface imperfection of air holes[J].

Journal of Lightwave Technology, 2016, 34(22): 5164-5169.

- Sillard P, Bigot-Astruc M, Boivin D, et al. Few-mode fiber for uncoupled mode-division multiplexing transmissions [C]//2011 37th European Conference and Exposition on Optical Communications, September 18-22, 2011, Geneva, Switzerland, USA. New York: IEEE Press, 2011.
- [13] Kasahara M, Saitoh K, Sakamoto T, et al. Design of three-spatial-mode ring-core fiber[J]. Journal of Lightwave Technology, 2014, 32(7): 1337-1343.
- [14] Wada M, Sakamoto T, Aozasa S, et al. Differential modal gain reduction of L-band 5-mode EDFA using EDF with center depressed core index[J]. Journal of Lightwave Technology, 2017, 35(4): 762-767.
- [15] Lopez-Galmiche G, Sanjabi Eznaveh Z, Antonio-Lopez J E, et al. Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control[J]. Optics Letters, 2016, 41(11): 2588-2591.
- [16] Herbster A F, Romero M A. Few-mode erbium-doped fiber amplifier design method based on the signal-pump overlap integral[J]. Optical Engineering, 2014, 53(9): 096101.
- [17] Ip E, Li M J, Gu R Y, et al. Components for future optical networks based on few-mode fiber[C]//Asia Communications and Photonics Conference 2013, November 12-15, 2013, Beijing, China. Washington, D. C.: OSA, 2013: AW3G.3.
- [18] Zhang Z Z, Guo C, Cui L, et al. All-fiber few-mode erbium-doped fiber amplifier supporting six spatial modes[J]. Chinese Optics Letters, 2019, 17(10): 118-122.
- [19] Bai N, Ip E, Wang T, et al. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump[J]. Optics Express, 2011, 19(17): 16601-16611.
- [20] Jung Y, Alam S, Li Z, et al. First demonstration and detailed characterization of a multimode amplifier for Space Division Multiplexed transmission systems[J]. Optics Express, 2011, 19(26): B952-B957.
- [21] Kang Q, Lim E L, Jung Y, et al. Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP₀₁ pump configuration[J]. Optics Express, 2012, 20(19): 20835-20843.
- [22] Salsi M, Ryf R, Le Cocq G, et al. A six-mode erbiumdoped fiber amplifier[C]//European Conference and Exhibition on Optical Communication, September 16-20, 2012, Amsterdam, Netherlands. Washington, D.C.: OSA, 2012: Th.3.A.6.
- [23] Zhang Z Z, Guo C, Cui L, et al. 21 spatial mode erbiumdoped fiber amplifier for mode division multiplexing transmission[J]. Optics Letters, 2018, 43(7): 1550-1553.
- [24] 王文笙, 宁提纲, 裴丽, 等. 基于遗传算法的少模光纤 放大器增益均衡[J]. 光学学报, 2021, 41(9): 0906001.
 Wang W S, Ning T G, Pei L, et al. Gain equalization of few-mode fiber amplifier based on genetic algorithm[J]. Acta Optica Sinica, 2021, 41(9): 0906001.
- [25] 阮江冉, 裴丽, 郑晶晶, 等. 基于包层泵浦的4模掺铒光

研究论文

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

纤放大器的增益均衡[J]. 光学学报, 2022, 42(4): 0406001.

Ruan J R, Pei L, Zheng J J, et al. Gain equalization of 4mode erbium-doped fiber amplifier based on cladding pump[J]. Acta Optica Sinica, 2022, 42(4): 0406001.

- [26] Townsend J E, Poole S B, Payne D N. Solution-doping technique for fabrication of rare-earth-doped optical fibres[J]. Electronics Letters, 1987, 23(7): 329-331.
- [27] Pal M, Sen R, Paul M C, et al. Investigation of the deposition of porous layers by the MCVD method for the preparation of rare-earth doped cores of optical fibres[J]. Optics Communications, 2005, 254(1/2/3): 88-95.
- [28] Vienne G G, Caplen J E, Dong L, et al. Fabrication and characterization of Yb³⁺: Er³⁺ phosphosilicate fibers for

lasers[J]. Journal of Lightwave Technology, 1998, 16 (11): 1990.

- [29] 张泽学,蒋作文,彭景刚,等. 铒镱共掺磷硅酸盐光纤的制备及其激光性能研究[J]. 无机材料学报, 2012, 27
 (5): 485-488.
 Zhang Z X, Jiang Z W, Peng J G, et al. Fabrication and characterization of Er³⁺: Yb³⁺ Co-doped phosphosilicate fibers[J]. Journal of Inorganic Materials, 2012, 27(5): 485-488.
- [30] 李海清,刘超平,赵楠,等. 掺镱光纤的吸收系数测试研究[J].光学与光电技术,2017,15(1):72-75.
 Li H Q, Liu C P, Zhao N, et al. Study on the absorption coefficient measurement of Yb-doped fiber[J]. Optics & Optoelectronic Technology, 2017, 15(1):72-75.